Ecosystems

- All members of a community, along with their physical and chemical environments
 - Vary greatly in size
 - Diversity promotes stability and productivity
 - Dynamic
 - energy flow
 - chemical cycling
 - Change over time (succession)

Coral Reefs are a rich, diverse and productive ecosystems

A coastal wetland on Lake Superior, Wisconsin.

Primary Production: Autotrophs

- The process of converting light energy to chemical energy is called photosynthesis.
- Plants use the energy captured in photosynthesis for maintenance and growth.
- The energy that is accumulated in plant biomass is called "net primary production."

Primary Production: Chemoautotrophs

- Chemoautotrophs manufacture their own food through chemosynthesis (the oxidation of inorganic chemical compounds).
- Most are bacteria or archeabacteria that live in hostile environments such as deep sea vents or hot springs and are the primary producers in their ecosystems.
- The sulfur oxidizing bacteria found in deep sea hydrothermal vents and nitrifying bacteria found in the soil are examples.

Energy Flow in Ecosystems

- Energy Roles / Trophic _Levels
 - Producers (Autotrophs)
 - Consumers (Heterotrophs)
 - herbivores,
 - carnivores (some are scavengers),
 - omnivores
 - Decomposers
- Trophic Levels
 - Ecological Pyramids of Energy
 - Ecological Pyramids of Biomass

Ecological Pyramids of Biomass

Biogeochemical Cycles

- Cycling of materials between the environment and organisms
- Chemical and biological processes
- Examples
 - Water cycle
 - Nitrogen cycle
 - Phosphorus cycle
 - Carbon cycle

Plants obtain nitrogen from nitrogen-fixing bacteria and pass it to other organisms through the food chain

Water Cycle

Nitrogen Cycle

Carbon Cycle

Carbon is incorporated into organisms through photosynthesis Energy is needed to form organic molecules (sunlight or chemical redox) Carbohydrate (CH_20) has more electrons than CO_2 – burn with O_2

- burning/decomposing carbohydrates $CH_20 \rightarrow CO_2 + H_2O + energy$ as heat
- respiration $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + energy as ADP$

- The movement of carbon, between the atmosphere, oceans, biosphere, and geosphere is described by the carbon cycle.
- several storage pools of carbon (black text) and the processes by which the various pools exchange carbon (purple arrows and numbers).
- If more carbon enters a pool than leaves it, that pool is considered a net carbon sink. If more carbon leaves a pool than enters it, that pool is considered net carbon source.

Image courtesy of earthobservatory.nasa.gov

Figure 1: A cartoon of the global carbon cycle. Pools (in black) are gigatons (1Gt = 1x109 Tons) of carbon, and fluxes (in purple) are Gt carbon per year.

Phosphorus Cycle

Photosynthesis & Respiration

- The process of converting light energy to chemical energy is called photosynthesis.
- CO₂ enters the **mesophyl** of the leaf through
 stomata (G stoma = mouth). O₂ leaves through the stomata
- The veins carry H₂O in and sugars out.

Photosynthesis

- Cells in the **mesophyll** contain
 Chloroplasts, the organelle where photosynthesis takes place.
- ¹/₂ million chloroplasts per square milimeter of leaf tissue
- Chlorophyll is the green pigment found in the thylakoid membranes of the chloroplast.
- Light Reactions Dark reactions (Calvin Cycle)

Respiration

More to come